Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Math Biosci ; 368: 109130, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103678

RESUMEN

In this paper, a stoichiometric aquatic tri-trophic level model is proposed and analyzed, which incorporates the effect of light and phosphorus, as well as the fear effect in predator-prey interactions. The analysis of the model includes the dissipativity and the existence and stability of equilibria. The influence of environmental factors and fear effect on the dynamics of the system is particularly investigated. The key findings reveal that the coexistence of populations is positively influenced by an appropriate level of light intensity and/or the dissolved phosphorus input concentration; however, excessive levels of phosphorus input can disrupt the system, leading to chaotic behaviors. Furthermore, it is found that the fear effect can stabilize the system and promote the chances of population coexistence.


Asunto(s)
Ecosistema , Modelos Biológicos , Animales , Conducta Predatoria , Dinámica Poblacional , Miedo , Fósforo , Cadena Alimentaria
2.
Environ Entomol ; 52(6): 1048-1056, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823555

RESUMEN

Empoasca onukii Matsuda is an important pest widely distributed in tea areas in China, which greatly affects tea production and quality. The long-term use of chemical control measures will cause environmental pollution. To better utilize wandering spiders that have strong competitive effects on the predation of E. onukii, we conducted a path analysis between the populations of E. onukii and wandering spiders in 3 tea plantations in 2020 and 2021. The wandering spider species that had the greatest direct and indirect effects on the population of E. onukii were analyzed by the magnitude of the path coefficient. Then, a gray system analysis was conducted to determine the closeness of the populations of different wandering spiders to E. onukii by the magnitude of gray correlation coefficient. Finally, the competition coefficients were calculated to determine the competitiveness of wandering spiders. In addition, considering the influence of the number of E. onukii on the interspecific competition of wandering spiders, the gray correlation coefficient and competition coefficient were combined to derive the competition intensity index, which was used to analyze the competitiveness of wandering spiders in a comprehensive manner. The highest competition coefficients in 2020 and 2021 were found for Ebrechtella tricuspidata Fabricius (Araneae: Thomisidae) (X2, 0.5329) and Clubiona reichlini Fabricius (Araneae: Clubionidae) (X4, 0.8475), respectively. The magnitude of the competition intensity index showed that the most competitive wandering spider in 2020 and 2021 was E. tricuspidata (X2, 0.5692) and C. reichlini (X4, 0.8892), respectively. The least competitive spider in both years was Plexippus setipes Karsch (Araneae: Salticidae) (X7). The more competitive the wandering spider is, the closer it is to E. onukii in terms of numbers, and the more dominant it is in feeding on E. onukii. By reasonably protecting and utilizing the competitive E. tricuspidata (X2) and C. reichlini (X4), we can achieve sustainable and effective control of E. onukii.


Asunto(s)
Hemípteros , Arañas , Animales , Conducta Predatoria ,
3.
J Insect Sci ; 23(5)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721502

RESUMEN

The predatory mites of the Phytoseiidae family are crucial biological control agents widely utilized in biological pest management targeting phytophagous mites and insects. Key factors in these control strategies are that phytoseiids must be able to find their main target prey and to maintain high populations and efficacy. To reduce expenses and time-consuming production methods of mass rearing of phytoseiids, pollen and other factitious (i.e., non-natural/nontarget) hosts need to be present as an alternative food for predatory mite populations. The mass-rearing possibilities of these predators on alternative food sources, such as astigmatid mites (i.e., house and stored mites) and pollen, must be evaluated not only by the cost of rearing settings but on the basis of their efficiency maintenance in killing prey. The pest kill rate (km) is the average daily lifetime killing of the pest by the natural enemy under consideration and can represent a useful indicator for phytoseiids efficacy to rank them as BCAs on the basis of their effective killing/predation on target prey. In this study, we evidenced that 2 astigmatid mites, Glycyphagus domesticus (De Geer) and Lepidoglyphus destructor (Schrank), and Quercus ilex L. pollen can be successfully adopted as substitute food sources for mass rearing of the phytoseiid Neoseiulus californicus (MgGregor); then, we determined that these populations of BCAs maintained a consistent km at new/first impact on the main target pest, Tetranychus urticae Koch.


Asunto(s)
Ácaros y Garrapatas , Quercus , Animales , Agentes de Control Biológico , Alimentos , Polen , Conducta Predatoria
4.
Exp Appl Acarol ; 89(1): 29-44, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36508066

RESUMEN

The addition of supplemental food sources for natural enemies is a growing component of conservation and augmentative biological control. Supplemental foods can be used to retain natural enemies when prey are scarce and to promote survival, fecundity, longevity, and development of natural enemy populations, especially generalist natural enemies. Amblydromella caudiglans (Schuster) (Acari: Phytoseiidae) is one of the most abundant predatory mites found in commercial apple orchards in Washington, USA, and contributes to spider mite control. However, because its widespread presence in commercial apple orchards was only recently discovered, how supplementary food sources affect its performance is unknown. In laboratory studies, we evaluated the performance (fecundity, retention, prey consumption) of the generalist phytoseiid A. caudiglans on commercially available supplemental food sources, including factitious prey (Ephestia eggs and Artemia brine shrimp cysts), and pollens of apple, pear, and cattail. We determined that A. caudiglans will not consume Ephestia eggs and performs best on cattail and pear pollens. Combinations of food sources did not enhance the performance of this predator compared to the best performing single-sources. The presence of alternative food sources did not decrease A. caudiglans predation of twospotted spider mite nymphs, except for Artemia brine shrimp cysts, which had a substantial handling time. These results lay the groundwork for identifying a way to promote and retain this natural enemy in tree fruit cropping systems through the use of food resource applications or floral plantings.


Asunto(s)
Ácaros y Garrapatas , Malus , Mariposas Nocturnas , Animales , Conducta Predatoria , Fertilidad , Polen , Control Biológico de Vectores/métodos
5.
Mar Pollut Bull ; 186: 114462, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521364

RESUMEN

Massive blooms of Nemopilema nomurai have occurred recently across East Asian waters. They are potentially important as zooplankton predators, as well as being competitors for prey with zooplanktivorous fish. Few studies have estimated the predation effects on zooplankton by N. nomurai in situ. To quantify the natural diets and feeding rates and estimate the predation effects, N. nomurai medusae were collected in the northern East China Sea and southern Yellow Sea, one of the principal nursery grounds of this jellyfish, during May 2019. The gut contents indicated that copepods were an important food source for N. nomurai; copepods <1000 µm represented the bulk of total prey intake in number (> 99 %). Linear regression analyses showed that the copepods number in the gut contents was significantly influenced by medusa diameter and prey abundance. Calculations using the above data indicated that one medusa (mean diameter: 26.06 ± 9.73 cm) consumed approximately 5248 ± 2768 of copepods daily. However, even the maximum predation pressure was <0.1 % of the total copepods standing stock daily due to the small diameter and low density/biomass of N. nomurai medusae in May 2019. The data presented here suggested that the predation effects of N. nomurai on copepods were low and might not reduce prey availability to fish with diets consisting mainly of copepods during the early occurrence stage of the N. nomurai population.


Asunto(s)
Cnidarios , Copépodos , Escifozoos , Animales , Conducta Predatoria , Zooplancton
6.
J Insect Sci ; 22(4)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833901

RESUMEN

The generalist predatory mite, Neoseiulus cucumeris (Oudemans) is known as one of the most effective natural enemies on many pests. This economically important biocontrol agent was reared for 20 generations on date palm and castor bean pollen as well as a mixture of pollen types, including date palm, castor bean, and almond. The performance of this predator was evaluated by comparing its life table parameters after different generations (G1-G20) fed on each diet in a laboratory at 25 ± 1°C, 60 ± 5% RH, and a photoperiod of 16:8 (L: D) h. The development time of the predator reared on all tested diets had no significant difference in G20. The intrinsic rate of increase (r) of N. cucumeris by feeding on the mixed pollen (0.197 day-1) was significantly higher than that on castor bean, or date palm pollen (0.146 or 0.152 day-1 in G1, respectively). Our results indicated that the predator's performance was not affected by long-term feeding on the pollen diets, as well as there was no considerable difference between pollen alone and pollen mixture diets. Furthermore, mites reared on pollen diets had higher quality than those reared on natural prey, Tetranychus urticae Koch.


Asunto(s)
Ácaros , Tetranychidae , Animales , Control Biológico de Vectores/métodos , Polen , Conducta Predatoria
7.
mBio ; 13(3): e0329321, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420489

RESUMEN

Nematode predation plays an essential role in determining changes in the rhizosphere microbiome. These changes affect the local nutrient balance and cycling of essential nutrients by selectively structuring interactions across functional taxa in the system. Currently, it is largely unknown to what extent nematode predation induces shifts in the microbiome associated with different rates of soil phosphorous (P) mineralization. Here, we performed an 7-year field experiment to investigate the importance of nematode predation influencing P availability and cycling. These were tracked via the changes in the alkaline phosphomonoesterase (ALP)-producing bacterial community and ALP activity in the rhizosphere of rapeseed. Here, we found that the nematode addition led to high predation pressure and thereby caused shifts in the abundance and composition of the ALP-producing bacterial community. Further analyses based on cooccurrence networks and metabolomics consistently showed that nematode addition induced competitive interactions between potentially keystone ALP-producing bacteria and other members within the community. Structural equation modeling revealed that the outcome of this competition induced by stronger predation pressure of nematodes was significantly associated with higher diversity of ALP-producing bacteria, thereby enhancing ALP activity and P availability. Taken together, our results provide evidence for the importance of predator-prey and competitive interactions in soil biology and their direct influences on nutrient cycling dynamics. IMPORTANCE Nematode predation plays an essential role in determining the rhizosphere microbiome. In doing so, predation dynamically affects the soil nutrient cycling, for instance, by shifting the availability of phosphorus (P) for plant uptake. However, the role of nematode predation inducing selective changes in the microbiome and affecting rates of P mineralization remains still largely unknown. Here, we used a field site treated with different fertilizers to investigate the importance of nematode predation influencing P availability and plant productivity, via changes in bacterial taxa producing alkaline phosphomonoesterases (ALP) and ALP activity in the rhizosphere of rapeseed. We integrated field and laboratory experiments to show that nematode predation induces bacterial keystone taxa to compete with the connected members and results in the modulation of ALP-producing bacterial populations and ALP activity in the rhizosphere. Taken together, our study provides novel insights into microbially mediated mechanisms of competitive interaction induced by nematode predation in enhancing P availability in the plant rhizosphere.


Asunto(s)
Nematodos , Fósforo , Animales , Bacterias , Plantas , Conducta Predatoria , Rizosfera , Suelo/química , Microbiología del Suelo
8.
Curr Opin Neurobiol ; 73: 102545, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35483308

RESUMEN

For decades, a central question in neuroscience has been: How does the brain support navigation? Recent research on navigation has explored how brain regions support the capacity to adapt to changes in the environment and track the distance and direction to goal locations. Here, we provide a brief review of this literature and speculate how these neural systems may be involved in another, parallel behavior-hunting. Hunting shares many of the same challenges as navigation. Like navigation, hunting requires the hunter to orient towards a goal while minimizing their distance from it while traveling. Likewise, hunting may require the accommodation of detours to locate prey or the exploitation of shortcuts for a quicker capture. Recent research suggests that neurons in the periaqueductal gray, hypothalamus, and dorsal anterior cingulate play key roles in such hunting behavior. In this review, we speculate on how these regions may operate functionally with other key brain regions involved in navigation, such as the hippocampus, to support hunting. Additionally, we posit that hunting in a group presents an additional set of challenges, where success relies on multicentric tracking and prediction of prey position as well as the position of co-hunters.


Asunto(s)
Neuronas , Conducta Predatoria , Animales , Hipotálamo/fisiología , Neuronas/fisiología , Sustancia Gris Periacueductal/fisiología , Conducta Predatoria/fisiología , Giro del Cíngulo/fisiología
9.
Environ Entomol ; 51(1): 145-152, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35171283

RESUMEN

Developmental time of the predatory mite Neoseiulus cucumeris (Oudemans) fed on cattail and almond pollen was determined under laboratory conditions at nine constant temperatures: 10, 15, 20, 25, 27, 30, 32, 35 and 38°C. No development was observed at 10°C. The lower temperature threshold (T0) was estimated to be 10. 97 and 10. 29°C for the almond and cattail pollen, respectively, using the Ikemoto linear model. Thermal constant (K) for pre-adult development of N. cucumeris was 112.8 and 123.5 DD fed on almond and cattail pollen, respectively, using the Ikemoto linear model. The interaction between diet and temperature had a significant effect on the developmental rate of N. cucumeris. The nonlinear Pradhan-Taylor, Janisch/Kontodimas, Briere-1, and Janisch/Rochat models best described the developmental rate of pre-adult stages of N. cucumeris. The estimated Tfast by Pradhan-Taylor model was 31.9 and 33.9°C when fed on almond and cattail pollen, respectively, which was similar to the observed shortest developmental time at 32°C. Our results revealed that N. cucumeris could develop over a wide temperature range (15-35°C), which is a desirable characteristic for a biocontrol agent in biological control programs.


Asunto(s)
Ácaros , Conducta Predatoria , Animales , Dieta , Control Biológico de Vectores/métodos , Polen , Temperatura
10.
Pest Manag Sci ; 78(5): 1963-1975, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35088932

RESUMEN

BACKGROUND: The importance of pollen as alternative food for generalist phytoseiid mites occurring in vineyards has been investigated in northeastern Italy. We compared pollen and phytoseiid abundance in four vineyards and in plots located at different distance from flowering hop plants. Pollen (Carpinus betulus and Typha spp.) was sprayed onto the foliage to evaluate the potential impact of this food source on predatory mite abundance. Finally, grass management was investigated to analyze the effect of a reduced mowing frequency on predatory mite population densities. RESULTS: Arboreal pollen was found mostly during the spring and the grapevine blossoming period. Nonarboreal pollen dominated throughout the growing seasons. In vineyards, the abundance of Amblyseius andersoni, Kampimodromus aberrans, Phytoseius finitimus, Typhlodromus pyri eggs and motile forms increased after a phase of large pollen availability. Hop pollen promoted K. aberrans population increases in vineyards. Pollen applications increased predatory mite egg and motile form densities and similar effects were obtained by reducing mowing frequency in vineyards. CONCLUSION: Pollen availability positively affects the biology of four phytoseiid species, promoting stable predatory mite populations in vineyards. However, natural pollen availability and predatory mite abundance often decrease in summer, and pollen supply can mitigate this trend. A higher pollen availability could be guaranteed by inserting hedges comprising species having scalar bloom, reducing mowing of inter-row groundcover and spraying pollen. The presence of flowering plants surrounding vineyards and in their inter-rows should be considered as a relevant factor to enhance the success of biocontrol tactics against phytophagous mites in viticulture.


Asunto(s)
Ácaros , Animales , Granjas , Control Biológico de Vectores , Polen , Dinámica Poblacional , Conducta Predatoria
11.
Sci China Life Sci ; 65(3): 466-499, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34985643

RESUMEN

All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.


Asunto(s)
Conducta Animal , Vías Nerviosas/fisiología , Animales , Bulimia , Hipotálamo/fisiología , Oxitocina/farmacología , Conducta Predatoria/fisiología , Conducta Sexual Animal/fisiología , Conducta Social , Vías Visuales/fisiología , Zona Incerta/fisiología
12.
Neotrop Entomol ; 51(1): 160-163, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34255264

RESUMEN

We report here for the first time, the predation of coffee berry borer (CBB) Hypothenemus hampei (Ferrari) by a green lacewing species, Chrysoperla externa (Hagen). We showed in laboratory the predator ability to access CBB galleries, remove pest immature stages, and prey on them. We also observed predation by third instar larvae on CBB adults. With this note, we add a new predator to the reported list of species still little explored of CBB control.


Asunto(s)
Coffea , Gorgojos , Animales , Café , Larva , Conducta Predatoria
13.
Pest Manag Sci ; 78(9): 3769-3777, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34250727

RESUMEN

BACKGROUND: Biological control by generalist predators can be mediated by the abundance and biodiversity of alternative prey. When alternative prey draw predator attacks away from the control target, they can weaken pest suppression. In other cases, a diverse prey base can promote predator abundance and biodiversity, reduce predator-predator interference, and benefit biocontrol. Here, we used molecular gut-content analysis to assess how community composition altered predation of Colorado potato beetle (Leptinotarsa decemlineata (Say)) by Nabis sp. and Geocoris sp. Predators were collected from organic or conventional potato (Solanum tuberosum L.) fields, encouraging differences in arthropod community composition. RESULTS: In organic fields, Nabis predation of potato beetles decreased with increasing arthropod richness and predator abundance. This is consistent with Nabis predators switching to other prey species when available and with growing predator-predator interference. In conventional fields these patterns were reversed, however, with potato beetle predation by Nabis increasing with greater arthropod richness and predator abundance. For Geocoris, Colorado potato beetle predation was more frequent in organic than in conventional fields. However, Geocoris predation of beetles was less frequent in fields with higher abundance of the detritus-feeding fly Scaptomyza pallida Zetterstedt, or of all arthropods, consistent with predators choosing other prey when available. CONCLUSION: Alternative prey generally dampened predation of potato beetles, suggesting these pests were less-preferred prey. Nabis and Geocoris differed in which alternative prey were most disruptive to feeding on potato beetles, and in the effects of farm management on predation, consistent with the two predator species occupying complementary feeding niches. © 2021 Society of Chemical Industry.


Asunto(s)
Artrópodos , Escarabajos , Heterópteros , Solanum tuberosum , Agricultura , Animales , Granjas , Cadena Alimentaria , Conducta Predatoria
14.
J Econ Entomol ; 114(6): 2255-2263, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34453434

RESUMEN

Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae), an economically important biocontrol agent, was reared on almond pollen for 50 generations. We evaluated the effect of rearing predators on this pollen by comparing biological parameters at different generations (G1-G50). The shortest and longest development time occurred in G5 and G10, respectively. Females at the fifth and 50th generations laid eggs earlier than those of other generations. Females at G50 laid eggs over a longer period and produced more eggs than females of other generations, although females in the earlier generations had a higher gross reproductive rate and net reproductive rate than later generations. The intrinsic rate of increase, as well as the finite rate of increase of N. cucumeris in the fifth and 50th generations was significantly greater than those in other generations, while the first generation had the lowest values of these parameters. The dorsal shield length of both females and males and the width of females were found to be unaffected by their constant feeding on almond pollen. However, the number of rearing generations significantly affected the width of males. Long-term rearing of N. cucumeris for at least 50 generation on almond pollen did not substantially affect the predator's quality and this food source could be used for the mass production of this predator. Almond pollen should be assessed in rearing other phytoseiid mites that are important in biocontrol strategies.


Asunto(s)
Ácaros , Prunus dulcis , Animales , Control Biológico de Vectores , Polen , Conducta Predatoria , Reproducción
15.
J Insect Sci ; 21(3)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974081

RESUMEN

The minute pirate bug Orius insidiosus (Say) is an important predator in mango agroecosystems. It attacks several species of thrips, particularly Frankliniella invasor Sakimura, which is considered a species of economic importance in mango. We investigated the effect of six diets on the development, survival, and reproduction of O. insidiosus: 1) first instars of F. invasor, 2) second instars, 3) adults, 4) pollen, 5) pollen plus thrips larvae, and 6) water. Individuals fed on thrips larvae, with or without pollen, completed their immature development significantly faster. Nymphs of O. insidiosus were able to complete their development feeding on pollen only, while individuals that received water as a diet were unable to reach the adult stage. The highest intrinsic growth rate was obtained when O. insidiosus were fed on pollen plus thrips larvae, and the lowest when individuals were fed on thrips adults. Our studies show that a diet of pollen plus F. invasor larvae is optimal for O. insidiosus development and population growth.


Asunto(s)
Agentes de Control Biológico , Heterópteros/crecimiento & desarrollo , Thysanoptera , Alimentación Animal , Animales , Larva/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Control de Plagas , Polen , Conducta Predatoria
16.
Environ Sci Technol ; 55(12): 8119-8127, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032421

RESUMEN

Fishes exposed to crude oil have shown reduced sociability and poor habitat selection, which corresponded with increased predation risk. However, the contribution of oil-induced cardiorespiratory impairments to these findings is uncertain. This study explores the effect of oil exposure on predation risk in a model fish species, Sciaenops ocellatus, across a suite of physiological and behavioral end points to elucidate the mechanisms through which any observed effects are manifested. Using mesocosms to assess group predator avoidance, oil exposure to 36.3 µg l-1 ΣPAH reduced the time to 50% mortality from a mean time of 80.0 (74.1-86.0 95% confidence interval [CI]) min to 39.2 (35.6-42.8 95% CI) min. The influence of oil impaired cardiorespiratory and behavioral pathways on predation risk was assessed based on respiratory performance, swim performance, sociability, and routine activity. Swim trials demonstrated that cardiorespiratory and swim performance were unaffected by exposures to 26.6 or 100.8 µg l-1 ΣPAH. Interestingly, behavioral tests revealed that exposure to 26.6 µg l-1 ΣPAH increased distance moved, speed, acceleration, and burst activity. These data indicate that behavioral impairment is more sensitive than cardiorespiratory injury and may be a more important driver of downstream ecological risk following oil exposure in marine species.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Peces , Contaminación por Petróleo/efectos adversos , Conducta Predatoria , Contaminantes Químicos del Agua/toxicidad
17.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876745

RESUMEN

Predators must frequently balance competing approach and defensive behaviors elicited by a moving and potentially dangerous prey. Several brain circuits supporting predation have recently been localized. However, the mechanisms by which these circuits balance the conflict between approach and defense responses remain unknown. Laboratory mice initially show alternating approach and defense responses toward cockroaches, a natural prey, but with repeated exposure become avid hunters. Here, we used in vivo neural activity recording and cell-type specific manipulations in hunting male mice to identify neurons in the lateral hypothalamus and periaqueductal gray that encode and control predatory approach and defense behaviors. We found a subset of GABAergic neurons in lateral hypothalamus that specifically encoded hunting behaviors and whose stimulation triggered predation but not feeding. This population projects to the periaqueductal gray, and stimulation of these projections promoted predation. Neurons in periaqueductal gray encoded both approach and defensive behaviors but only initially when the mouse showed high levels of fear of the prey. Our findings allow us to propose that GABAergic neurons in lateral hypothalamus facilitate predation in part by suppressing defensive responses to prey encoded in the periaqueductal gray. Our results reveal a neural circuit mechanism for controlling the balance between conflicting approach and defensive behaviors elicited by the same stimulus.


Asunto(s)
Hipotálamo/fisiología , Conducta Predatoria , Animales , Neuronas GABAérgicas/fisiología , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas
18.
Artículo en Inglés | MEDLINE | ID: mdl-33835199

RESUMEN

To perform adaptive behaviours, animals have to establish a representation of the physical "outside" world. How these representations are created by sensory systems is a central issue in sensory physiology. This review addresses the history of experimental approaches toward ideas about sensory coding, using the relatively simple auditory system of acoustic insects. I will discuss the empirical evidence in support of Barlow's "efficient coding hypothesis", which argues that the coding properties of neurons undergo specific adaptations that allow insects to detect biologically important acoustic stimuli. This hypothesis opposes the view that the sensory systems of receivers are biased as a result of their phylogeny, which finally determine whether a sound stimulus elicits a behavioural response. Acoustic signals are often transmitted over considerable distances in complex physical environments with high noise levels, resulting in degradation of the temporal pattern of stimuli, unpredictable attenuation, reduced signal-to-noise levels, and degradation of cues used for sound localisation. Thus, a more naturalistic view of sensory coding must be taken, since the signals as broadcast by signallers are rarely equivalent to the effective stimuli encoded by the sensory system of receivers. The consequences of the environmental conditions for sensory coding are discussed.


Asunto(s)
Acústica , Vías Auditivas/fisiología , Percepción Auditiva , Conducta Animal , Ambiente , Arquitectura y Construcción de Instituciones de Salud , Insectos/fisiología , Sonido , Estimulación Acústica , Adaptación Psicológica , Animales , Quirópteros/fisiología , Señales (Psicología) , Patrones de Reconocimiento Fisiológico , Conducta Predatoria , Localización de Sonidos
19.
J Anim Physiol Anim Nutr (Berl) ; 105(6): 1214-1225, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33772913

RESUMEN

This study evaluated the effect of methionine supplementation, predation risk and their interaction on gut histology, whole-body cortisol levels, and intestinal gene expression in zebrafish. A total of 360 one-year-old animals were maintained under two environmental conditions and fed diets containing different methionine sources. Fish were fed either a control diet (CTL, without methionine supplementation), a diet supplemented with dl-methionine (DLM), or a diet supplemented with methionine dipeptide (MM) in the absence (AP) of a predator or in the presence of the predator (PP) for 48 h or 20 days. Predator-induced stress for 20 days resulted in lower body weight. Zebrafish fed methionine-supplemented diets had higher weight gain than control fish. We found no effect of predation stress or methionine supplementation on cortisol level. Predation risk and methionine supplementation showed no interaction effect on dipeptide transporter gene expression. After 48 h of predation pressure, zebrafish had higher mRNA expression of SOD2, CAT and GPX1 in the gut. After 20 days of exposure to the predator, zebrafish fed methionine-supplemented diets had lower expression of GPX1, SOD2 and CAT than those diet CTL. Methionine dipeptide and free methionine supplementation improved growth, intestinal health and survivability of zebrafish both conditions.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Metionina , Pez Cebra , Alimentación Animal/análisis , Animales , Catalasa/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Dipéptidos , Glutatión Peroxidasa/metabolismo , Intestinos , Metionina/administración & dosificación , Transportador de Péptidos 1/metabolismo , Conducta Predatoria , Superóxido Dismutasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Glutatión Peroxidasa GPX1
20.
J Theor Biol ; 520: 110679, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33753121

RESUMEN

A predator that preys on randomly-distributed stationary energetically-equivalent small prey will probably choose its next prey to be the nearest one. But what if no prey is found within the detection range of the predator? It is hypothesized that in this case the predator will move along an arbitrary chosen direction until a prey is detected, and turn towards it. In a stochastic environment this strategy leads to a certain distribution function of distances that the predator moves between consequent prey catches. It is shown that when the detection range of the predator exceeds the average distance between prey, this distribution function becomes the nearest neighbor distribution function, whereas; wherew when the detection range is small as compared with the average distance between prey, it becomes the exponential distribution, as the distribution of distances between neighbors on a line. In the first case, the average distance between catches becomes roughly half the average distance between prey; in the second case, it becomes inversely proportional to the square of the detection range. Ocean sunfish preys on practically stationary jellyfish at depth of more than a hundred meters, in dim light. Plausibly, it can detect jellyfish only at close quarters, and hence its detection range is probably small as compared with the average distance between prey. Analysis of the tracking data from seven animals over a few days yielded many thousands of swimming segments separating consequent prey catches. Indeed, lengths of these segments were shown to have the exponential distribution. This finding not only supports the initial hypothesis of this study, but also reveals the fragility of the energetic balance of this animal. A two-fold decrease in the detection range (e.g. due to a decreased visibility) is expected to increase the average distance it moves between catches four-fold, and hence decrease its specific energy intake (the number of jellyfishes per distance moved) by the same rate.


Asunto(s)
Conducta Predatoria , Escifozoos , Animales , Ingestión de Energía , Océanos y Mares , Natación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA